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Abstract—Modern electricity markets conduct a two-
settlement procedure. Ahead of time, they allocate definite
supply as well as reserves. Close to the time of consumption,
they balance supply and demand. Bidding in these two auctions
poses a challenge for automated bidding by agents, which will
be more common in future electricity markets and so-called
“smart grids”. In a decision-theoretic model, we implement
the current bidding practice that uses two independent bids
and a novel, unified format that simplifies computation. We
show through Monte-Carlo simulations in one-shot settings
that the unified format restricts market power of suppliers in
exploitable settings, and is also less vulnerable to uncertainty
of bidders about market outcomes.
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I. INTRODUCTION

The principal engineering challenge in power systems is

to keep costs of production low and to maintain a constant

balance between supply and demand. The ongoing deregu-

lation of electricity markets adds the challenge to increase

competition in markets with (currently) high concentration

of market power at the suppliers. At the same time, both

more volatile generation methods (e.g. renewables) as well

as more flexible technological components are being intro-

duced, while electricity remains difficult to store. Based on

these developments, the “smart grid” concept envisions more

dynamic pricing and more decisions made close to the time

of consumption. Intelligent agents can potentially take over

many planning decisions and place bids in the name of their

owners. but for this an advancement in the understanding

of the dynamics and proposals for computationally efficient

mechanisms are needed.
This work builds on a type of market allocation mech-

anism that combines ahead-planning with dynamic pricing.

The two-settlement procedure, which is currently being used

in many deregulated electricity markets, trades a continuous

good (electricity) in two different markets. The first settle-

ment clears an “ahead market” (usually one day ahead of

time, but shorter intervals are possible in more dynamic

market settings, e.g. in “smart grids”). Generators submit

a bid to sell some quantity definitively. The ahead market

also allocates an additional quantity from generators, but

only as an option. The second settlement clears a ”balancing

market”. Generators submit a bid in order to sell some part

of this option to even out short-term imbalances.

Specifically, fast-reacting generators like gas power plants

or batteries will become more valuable, in order to act as

reserve power in the balancing market. It is, however, not

settled how to allocate quantities and prices for balancing

markets. Is the quantity of needed reserves chosen inde-

pendently from the quantity of definitely allocated power?

Should power only be paid for when it is used for balancing

or should the market pay for the availability of fast-startable

reserve capacity, regardless of whether it is put to use? This

paper uses a version of the two-settlement procedure in

which the market maker allocates reserve capacity relative

to definitely allocated capacity and dynamically sets prices

for electricity which is actually used for balancing.

Bidding in the two-settlement procedure is complex and it

is not well-understood how intelligent agents would perform.

In a decision-theoretic model, we investigate the profit

maximisation problem of a generator on an ahead market

(that is part of the two-settlement procedure) and its effects

on market prices and the market power of the generator. In

a parallel companion work [4] to this work, we investigate

the suitability of this format for a flexible consumer.

We advance the state of the art in the following ways:

First, we extensively model the decision problem for a

smart bidding agent (who is able to offer reserve capacity

to the balancing market) in the two-settlement model by

implementing the current practice, where separate bids are

made for definitively sold power and reserve power. Second,

we implement a unified bid format that was proposed by

the authors in [5] into this model. The format simplifies

the optimisation problem of the bidding agent substantially.

Finally, we study varying what-if scenarios with stochastic

Monte-Carlo simulations. Experimental evidence shows that

the combined format is appealing to market makers, as it

restricts the exercise of excessive market power by bidders

in exploitable market settings (compared to a non-unified

approach). It is also appealing to bidders, as it shows a good

performance in all other settings and is less vulnerable to

increasing uncertainty about market outcomes.
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II. BACKGROUND

Modern electricity markets are centralised, two-sided

multi-unit auctions, which are challenging to analyse. They

have often used uniform-price auctions (UPA) designs, in

which all participants pay or earn the same unit price. The

last decade has seen more markets designed as discrimi-

natory pricing auctions (DPA)[7], in which unit prices may

differ based on individual bids. Generally, UPA settings have

been found to result in more efficient allocations, but DPA

designs lower prices and market power of suppliers, see

for example Fabra et al. (2002) [3] and Damianov et al.

(2010) [2]. This paper models a DPA design.

A very common (e.g. [6], [1], [14]) mathematical model

of bids in electricity markets are supply functions, based on

a quadratic representation of total production costs: f(Q) =
cQ + RQn. This makes the assumption that there are no

fixed costs. Q denotes a quantity of electricity and c ∈ R

and R ∈ R are coefficients. Also, c > 0, R > 0 and n > 1.

Market power, defined as “the ability to alter profitably

prices away from competitive levels” [9], lies currently

mainly with suppliers, who face inelastic demand. To tackle

this problem, electricity market designers have been search-

ing for the best trade-off in bid format design, which allows

bidders to freely express their economic preferences, but

also restricts them artificially in order to limit prices and

the exercise of market power. For instance, Baldick (2002)

[1] mentions that quadratic terms in the bids could be limited

or bids could be required to be consistent across time.

In the two-settlement procedure described above, the

market maker procures reserve energy. The required optimal

quantity is currently chosen by static heuristics, for exam-

ple based on the capacity of the largest power plant, by

remaining capacity in allocated generation facilities, or on a

percentage of peak capacity in the market. Although they are

delivered together as an indistinguishable product, definitive

and reserve electricity are priced independently. An impor-

tant question is when to submit the supply bids for each type.

Most scientific literature favours simultaneous approaches

(submit at the same time) over sequential ones (submit

bids for reserve electricity after the market for definitive

electricity has been cleared). In sequential approaches, re-

commitments can lead to inefficient allocations.

However, a problem with simultaneous approaches is

that a bid in one market cannot refer to outcomes in the

other market. This reduces chances of reaching efficient

allocations. Only few proposals to tackle this problem exist.

For example, Virag et al. (2011) [15] propose an iterative

market design, where in each round the market maker

proposes two market prices and the market participants

update the quantities they would sell or buy at those prices.

This runs until conversion, but the runtime properties of this

dynamic method are uncertain. The problem has also been

discussed in Höning et al. (2011) [5], where a combined

bid format is proposed for the two-settlement procedure

which allocates reserve quantities relative to definitely sold

quantities. and a preliminary market clearing mechanism

was sketched as constraint satisfaction problem. This paper

analyses the performance of this bid format as described in

Section I, from the viewpoint of a bidder.

III. MODEL

We consider a generator g using a decision-theoretic ap-

proach. g aims at maximising profits from selling electricity

in the two markets and his task is to construct appropriate

bids for this. In this section, we describe the mathematical

form of bids, the ahead market A, the balancing market B
and g’s profit maximisation problem.

A. Mathematical form of bids

We denote the maximal production capacity of any gen-

erator h with QU
h and h’s total cost function by Ch(Q) =

chQ + RhQ2, where Q is a quantity of electricity. In our

market model, bids are supply functions and map unit prices

to quantities (to model the current practice, market B also

accepts a constant price bid, see Section IV). A bid by

generator h is a linear function. It is based on C ′h
−1

, the

inverse derivative of the total cost function Ch, wherein h
can adapt the minimal offer price per unit ch.

First, C ′h
−1

is derived as follows: Let C ′h be the derivative

of Ch and ρm be the marginal unit cost related to a quantity

of power Q (i.e. ρm equals the costs of the last produced

unit). Then, C ′h(Q) = ch + 2RhQ = ρm. We can invert C ′h
by solving for Q, thus Q = 1

2Rh
(ρm− ch) = C ′h

−1(ρm). In

economic theory, C ′h
−1

is called the marginal cost function

and represents the profit-maximising bid in a perfectly

competitive market [12]. For comparison, the average unit

cost function is the inverse of
Ch(Q)

Q , which is 1
Rh

(ρt− ch),
where ρt is the average unit cost. Second, h can construct

a bid bh in order to maximise profits by deviating from

both his ch and Rh value. For simplicity, we fix Rh and

restrict h to adapt only the parameter ch. We represent

this by: bh(ρ) = 1
2Rh

(ρ − c∗h), where ρ is a unit price

and c∗h is the parameter that h can freely choose. In [1],

this restriction of the function parametrisation is called “c-

parametrisation” and previous literature that also used this

restriction is described.

B. The two markets

Let the overall offered quantity be QU . Each generator

h submits bids bA
h and bB

h for both markets simultaneously,

before market A is cleared. We call the market maker SO
(which is short for System Operator). The SO uses all bids

bA
h to clear the aggregate demand on market A. The SO

definitely buys one part of QU , called QA. Another part,

called Qopt, is allocated as an option on electricity and

determined by the SO alone. Later in market B, some part

QB ∈ [0, Qopt] of this option might be bought. When the
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demand side announces their demand in market B, all supply

bids bB
h are used to clear market B.

This work models the decision problem of one generator

agent g. In both markets, we model the residual demand
function Dg that g effectively faces, given demand and sup-

ply from all other market participants. The residual demand

is the full market demand minus the quantity supplied by

other generators at each unit price ρ [12]. Thus, let D(ρ)→
R be an aggregated demand function and S−g(ρ) → R

an aggregated supply function, where S−g aggregates all

generators besides g. Then, Dg(ρ) = D(ρ) − S−g(ρ).
Following [12], the latter functions are given by:

D(ρ) = Dmax − αρ

S−g(ρ) = β(ρ− ρmin)
(1)

where Dmax denotes the maximal demand (if price is zero),

α denotes the slope of D, ρmin denotes the minimal unit

offer price and β ∈ [0, 1] denotes the slope of S−g . Dg is

given by:

Dg(ρ) = D(ρ)− S−g(ρ)
= Dmax + βρmin − ρ(α + β)

(2)

Market clearing works as follows: Given g’s bid bg , the

quantity Qg that g sells and the unit price ρb that g earns

are found at the intersection of residual demand and g’s bid,

thus Dg(ρb) = bg(ρb). However, we also need to consider

outcomes of this intersection that would lead to invalid

quantities (quantities which g is not able to produce). g can

not produce negative quantities, so if Dg(ρb) < 0, g sells

nothing, as his bid bg was too expensive. Furthermore, we

model an individual maximal capacity constraint Qmax
g for

bg (for S−g , we assume that individual capacity constraints

of the aggregated suppliers are not exceeded and thus not

relevant for the market clearing). g is willing to sell Qmax
g

at price ρb,max (thus, bg(ρb,max) = Qmax
g ) and the SO

is willing to pay ρD,max (thus, Dg(ρD,max) = Qmax
g ).

If bg(ρb) > Qmax
g (see Figure 1 for illustration), we use

a discriminative (also called pay-as-bid) auction approach

[7], such that g will sell Qmax
g at a unit price of ρb,max if

ρb,max ≤ ρD,max or sell nothing otherwise.

From now on, we denote with QA
g , Qopt

g and QB
g the

quantities allocated to g and with ρA
g and ρB

g the unit prices

that g earns on markets A and B, respectively. For g’s

competitors, we denote with QA
−g and QB

−g the quantities

that they sell and with ρA
−g and ρB

−g the prices they earn.

Markets A and B are coupled as follows: From now

on, we will use D, Dg , S−g and their parameters with the

superscripts A for market A and B for market B. If we omit

the superscripts, then the setting is equal in both markets.

Equations 3 and 4 show D and S−g for markets A and B,

where [X]≥0 denotes the maximum of X and 0.

Figure 1. Market clearing. g’s bid bg is constrained by Dg and Qmax
g .

DA(ρ) :=
[
DA

max − αAρ

]
≥0

SA
−g(ρ) :=

[
βA(ρ− ρA

min)
]
≥0

(3)

DB(ρ) :=
[
DB

max − αBρ

]
≥0

SB
−g(ρ) :=

[
βB(ρ− ρB

min)
]
≥0

(4)

Two parameters of market B are determined by the

outcome of market A, while the other two remain freely

configurable. First, we assume that the maximal demand

in market B is related to QA via a ratio rm, such that

DB
max = rmQA

1−rm
. The SO can approximate the ratio rm by

experience. We assume for simplicity of our mechanism that

he approximates rm perfectly and allocates Qopt = DB
max.

Furthermore, we assume that he uses rm also for g in-

dividually, so it always holds that Qopt
g = rm∗QA

g

1−rm
. We

will evaluate scenarios with different values for rm and

assume in this work that g as well as (the aggregation

of) other generators are able to ramp up enough of their

capacity in time for balancing. In addition, we assume that

other generators bid the price they achieved in market A
as minimum price in market B, thus ρB

min = ρA
−g . By this

assumption, ρB
−g ≥ ρA

−g , which is a reasonable expectation,

because prices for balancing power are usually higher than

for power bought on an ahead market [11]. In our model,

there are now six settings free for parametrisation, namely

DA
max, αA, βA, ρA

min, αB and βB .

Finally, we model uncertainty about market outcomes.

g knows the residual demand functions DA
g and DB

g . From

g’s point of view, DA
g and DB

g shift up- or downward with

an independent motion in markets A and B. These shifts are

determined by noise parameters kA and kB , with which we

multiply the minimal price of the competition:
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Table I
SUMMARY OF MARKET PARAMETERS AND MARKET OUTCOMES. WITH

THE EXCEPTION OF rm AND Qopt
g , WE USE THEM WITH SUPERSCRIPTS

A OR B TO DENOTE THEIR USAGE IN MARKET A OR B, RESPECTIVELY.

Parameter Description

Dmax maximal demand of demand function D
α slope of D

ρmin min. price of supply function S−g (g’s competition)
β slope of S−g

k noise parameter

rm describes ratio between QA and DB
max as well as

between QA
g and Qopt

g

Outcome Description

Qg , Q−g quantities that g and g’s competition sell

Qopt
g quantity that g holds in reserve for market B

ρg , ρ−g prices that g and g’s competition earn

SA
−g(ρ, kA) = βA(ρ− ρA

minkA)

SB
−g(ρ, kB) = βB(ρ− ρB

minkB)
(5)

C. The profit maximisation problem

g has two bids to construct (we call them bA
g and bB

g ), one

for market A and one for market B. We now consider the

optimisation of bids in terms of profits for g. The profit in

each market is the revenues minus the total production costs.

In market A, revenues are QA
g ∗ ρA

g and the total costs of

producing QA
g are given by Cg(QA

g ). In market B, revenues

are QB
g ∗ ρB

g . The total costs of producing QB
g are the costs

for producing the last QB
g units in QA

g +QB
g . Therefore, we

introduce a total cost function Cbal
g for QB

g that calculates

the costs on Cg(QA
g + QB

g ) for QB
g ∈ [0, Qopt

g ]:

Cbal
g (QA

g , QB
g ) = Cg(QA

g + QB
g )− Cg(QA

g )

= (cg + 2RgQ
A
g )QB

g + Rg(QB
g )2

(6)

Then, the profit functions are:

profitsA
g (bA

g , kA) = ρA
g QA

g − Cg(QA
g )

profitsB
g (bB

g , bA
g , kB) = ρB

g QB
g − Cbal

g (QA
g , QB

g )
(7)

where QA
g and ρA

g are determined through market clearing

as described in Section III-B, when g submits the bid bA
g to

market A, with kA being the noise variable and QU
g (1−rm)

being g’s maximal capacity in market A. QB
g and ρB

g are

likewise determined through market clearing when g submits

bid bB
g to market B, with kB being the noise variable and

Qopt
g = rm∗QA

g

1−rm
being g’s maximal capacity in market B.

Note that profitsB
g is coupled to the results of market A

(and thus needs to consider bA
g ), as QA

g is used in Cbal
g as

well as in the determination of Qopt
g .

We now formulate the profit maximisation problem for

g. g considers limited ranges of noise parameters kA and

kB , [kA
min, kA

max] and [kB
min, kB

max], respectively. For the

likelihood of kA and kB , let the two probability lookup

functions be probA(kA) → [0, 1] and probB(kB) → [0, 1].
The profit maximisation problem for bA

g and bB
g is shown

below. For each possible outcome for bid bA
g , g considers

all possible outcomes for bid bB
g .

arg max
bA

g ,bB
g

[∫ kA
max

kA=kA
min

probA(kA) ∗
(

profitsA(bA
g , kA)

+
∫ kB

max

kB=kB
min

probB(kB) ∗ profitsB(bB
g , bA

g , kB) dkB

)
dkA

]
(8)

IV. BID FORMATS

In the reference format (which we call BENCH), g
submits two independent bids: a bid bA

g to market A, which

is a supply function of the format bA
g (ρ) = 1

2Rg
∗ (ρ− c∗g),

and a bid bB
g to market B, which is a constant price ρB∗

g .

In the unified bid format proposed in [5] (which we

call UNI), g bids only one bid bg(ρ) = 1
2Rg

(ρ − c∗g).
First, the SO clears market A, using bg as bA

g . Given the

outcome of market A (g sells QA
g at unit price ρA

g =
bg
−1(QA

g ) = c∗g + 2RgQ
A
g ), the SO then constructs bid

bB
g from bg to submit to market B. bB

g defines bg(ρB
g ) for

ρB
g ∈ [ρA

g , ρbg,max], where bg(ρbg,max) = QA
g +Qopt

g . bB
g is

based on bg , with the minimal unit price (c∗g) replaced by ρA
g

(see bB
g (ρ) in (9)). The UNI format reduces the complexity

of g’s optimisation problem by one dimension to only one

bid bg and thus simplifies the computation that a bidding

agent has to perform:

arg max
bg

[∫ kA
max

kA=kA
min

probA(kA) ∗
(

profitsA
g (bg, k

A)

+
∫ kB

max

kB=kB
min

probB(kB) ∗ profitsB
g (bB

g , bg, k
B) dkB

)
dkA

]

where bB
g (ρ) =

1
2R g

(ρ− (c∗g + 2RgQ
A
g ))

(9)

In contrast to the BENCH format, the UNI format

makes it possible to use the same bidding strategy on

market A and B. For instance, a marginal cost bid bg(ρ) =
1

2Rg
(ρ− cg) also bids marginal unit costs with bid bB

g .

V. SIMULATION EXPERIMENTS

We construct two market scenarios and investigate several

settings in each, using a systematic parameter analysis. In

each setting, g constructs bids for markets A and B. We

then investigate the resulting market outcome via Monte

Carlo simulations. To assess the effect of g’s decision on

the overall market, we measure an aggregated measure
of unit prices over both markets combined, dividing the

revenue of all suppliers by all sold power:
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ρA
g ∗QA

g + ρA
−g ∗QA

−g + ρB
g ∗QB

g + ρB
−g ∗QB

−g

QA
g + QA−g + QB

g + QB−g

(10)

Furthermore, we want to quantify g’s ability to prof-

itably alter prices away from competitive levels. To this

end, economists measure the market power of actors. We
measure market power by calculating the Lerner index

∈ [0, 1], defined by dividing per-unit profits by unit price.

As the index is defined for a monopolist, we multiply it by

g’s market share [13]:

lerner(Q) =
ρg( �Q)− costsg( �Q)

ρg( �Q)
sm( �Q) (11)

where ρg is the average unit price g earns when selling the

quantities �Q = (QA
g , QB

g ), costsg is the average production

costs per unit and sm is the market share. In our case:

ρg(QA
g , QB

g ) =
QA

g ρA
g + QB

g ρB
g

QA
g + QB

g

costsg(QA
g , QB

g ) =
Cg(QA

g + QB
g )

QA
g + QB

g

sm(QA
g , QB

g ) =
QA

g + QB
g

QA
g + QA−g + QB−g + QB

g

(12)

Besides market power and aggregated unit price, we also
measure g’s profits, prices ρA

g , ρB
g and quantities QA

g , QB
g .

A. Oligopolistic market scenario

First, we define an oligopolistic market scenario with

realistic settings from a wholesale power market simulation

study by Sun & Tesfatsion (2007) [14]. In [14], several

generators and a generic buyer profile are described for

24 hours of a day on an electricity wholesale market. In

particular, the oligopolistic scenario corresponds to hour 8

in that study (we chose hour 8 as it is similar to most other

hours and not an outlier). Because we use settings from

a wholesale market study, the prices in our model are in

$/MWh - but we note that the general findings of this model

can also hold for markets which trade KWh.

We parametrise g as a typical generator, according to [14].

We set cg = 18.8, Rg = 0.008 and QU
g = 300.

For the parametrisation for D and S−g on the markets

A and B, Table II lists the default setting for this scenario,

which we discuss below, as well as variation ranges.

Furthermore, we run simulations with rm = 0.1, which

is a reserve level often in use today, as well as rm = 0.3, a

setting that is not unrealistic in the market scenarios we can

expect in the upcoming 10 years, at least for the generators

that can offer significant reserve power.

The sum of the demand of all buyers in [14] is 900,

or 3QU
g . We set DA

max = 3QU
g (1 − rm). The overall

Table II
DEFAULT SETTINGS AND VARIATION RANGES FOR MARKET

PARAMETERS IN THE OLIGOPOLISTIC SCENARIO. THE PARAMETERS

FOR MARKET B VARY IN DEPENDENCE TO THE PARAMETERS OF

MARKET A.

Name Default setting Variation range

DA
max 3QU

g (1− rm) = 810[rm : 0.1] [2QU
g (1− rm),

= 630[rm : 0.3] 9QU
g (1− rm)]

αA 1.0 [0.0, 5.0]

ρA
min 1.1cg = 20.68 [0.9cg , 1.5cg ]

βA 4
2Rg

= 250 [
DA

max
300

,
DA

max
15

]

DB
max

rmQA

1−rm

αB αA

5
= 0.2

ρB
min ρA

−g

βB βA = 250

demand in market B depends on the sales of market A (see

Section III-B), thus we set DB
max = rmQA

1−rm
.

For the slope of the demand functions, we use a survey

report [8] of several demand responsiveness studies. All

studies in [8] measured the price elasticity of demand, which

denotes the percentage change in quantity demanded in

response to a one percent change in price. [8] distinguishes

between “long-run” and “short-run” demand, where the

latter allows less substitution of demanded power by any

alternative, similar to the situation in a balancing market.

The survey reports price elasticities between 0.7 and 2.1
for “long-run” scenarios (which we use for market A) and

between 0.03 and 0.5 in “short-run” scenarios (which we use

for market B). We take αA = 1.0 and αB = 0.2 = αA

5 ).

Furthermore, [14] uses five generators in their model.

We assume that all generators have the same slope in their

production costs. Thus, we multiply the slope of g’s marginal

costs by four to get the slope of S−g: β = 4
2Rg

. Finally, we

assume that the minimal unit price of S−g is 10% higher

than g’s minimal unit costs: ρA
min = 1.1cg . As described in

Section III-B, ρB
min is set to ρA

−g .

B. Competitive market scenario

To provide an outlook into market scenarios of the upcom-

ing 10 years, we also design a scenario with a competitive

market (which is more relevant smart grids), see Table III.

We base it on the oligopolistic scenario we described in

Section V-A. Here, we assume the number of players on

the supply side to be ten times higher and set β = 40
2Rg

.

Furthermore, we also assume that demand responsiveness

is ten times higher and set αA = 10 and αB = 2. Both

assumptions are likely approximations, as the number of

suppliers as well as the demand responsiveness are very

low in current markets and are expected to increase rapidly

in future energy systems. Finally, we assume the overall

demand to be twice as high and set Dmax = 6QU
g (1− rm).

This assumption is reasonable, because electricity demand

is expected to increase, especially with increasing market
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Table III
DEFAULT SETTINGS AND VARIATION RANGES FOR MARKET

PARAMETERS IN THE COMPETITIVE SCENARIO.

Name Default setting Variation range

DA
max 6QU

g (1−rm) = 1620[rm : 0.1] [4QU
g (1− rm),

= 1260[rm : 0.3] 18QU
g (1− rm)]

αA 10 [5.0, 15.0]

ρA
min 1.1cg = 20.68 [0.9cg , 1.5cg ]

βA 40
2Rg

= 2500 [
DA

max
300

,
DA

max
15

]

DB
max

rmQA

1−rm

αB αA

5
= 2

ρB
min ρA

−g

βB βA = 2500

penetration of electric vehicles. Also, the addition of storage

facilities to the power systems is both needed and expected.

C. Method

In order to systematically create parametrised settings in

both scenarios, we vary the values of one parameter at a time

while the others remain at the default setting. Per parameter,

we select 7 evenly-spaced values from a value range. We

vary rm ∈ [0.01, 0.4], Rg ∈ [0.001, 0.03], φ ∈ [0.0, 3.0] and

the market parameters DA
max, αA, ρA

min and βA according

to the variation intervals indicated in Tables II and III.

For each setting, g constructs either two bids bA
g and

bB
g (with the BENCH format) or one bid bg (with the

UNI format). First, g performs a brute-force search on bid

parameter settings: g evaluates 100 evenly-spaced values

for c∗g ∈ [cg, ρ
A
max] and, with the BENCH format, also

evaluates for each value of c∗g 100 evenly-spaced values

for ρB∗
g ∈ [cg, ρ

B
max], where DA

g (ρA
max, 1) = 0 and

DB
g (ρB

max, 1) = 0, given QA
g = 0. Starting with the most

promising point from the brute force evaluations, g then

applies a downhill simplex algorithm [10] to maximise his

expected profits.

We sample the outcomes for each setting 100 times and

report the average results together with one standard devia-

tion in our graphs. Each sample uses a new pair of the noise

parameters kA and kB , generated by the Mersenne twister

pseudo-random number generation algorithm. We assume

kA and kB to be distributed normally and thus have to

choose means and standard deviations in both markets A and

B. We set the means to 1 and choose each standard deviation

s in the following way: We denote ρmax as the maximal unit

price in the market (such that Dg(ρmax, 1) = 0). We then

define s such that Dg(ρmin, 1+φs) = 0, where ρmin is the

minimal price of S−g (see Section III-B) and φ is a scaling

parameter (in default settings, φ = 1). The difference of

ρmax − ρmin is dependent on the market setting and also

differs in markets A and B. Thus, the noise in the market

is proportional to the maximal price variation in residual

demand. During the the profit maximisation problem, g
considers values for k ∈ [kmin = 1− 3s, kmax = 1 + 3s].

D. Results

We begin with confirming that, for several general eco-

nomic properties, the market model behaves as expected

in reality. First, g makes profits with both formats and

across all settings. Profits also correlate with settings like

one would expect. They are positively correlated to changes

in Rg , DA
max and ρA

min and negatively correlated to rm, αA

and βA. Second, g’s presence increases competition as he

can offer electricity below market price. We simulated the

market without g (thus decreasing the number of suppliers

by one). As should be expected, the aggregated unit price

is significantly higher than with g’s presence. Finally, in

comparison to the oligopolistic scenario, the competitive

scenario has lower aggregated market prices, as well as

market power and profits for g.

We now turn to three major observations, concerning

notable differences or similarities in outcomes when g uses

either the BENCH or the UNI format:

Observation 1: The UNI format substantially re-
duces market prices and market power in exploitable
settings. In the default settings, the UNI and BENCH
format show no significant1 differences in market power.

The biggest opportunities for g to exercise market power

exist in settings with larger values for ρA
min, because then

the difference between offer prices of S−g and g’s costs is

high and g can thus increase his profit margin. The settings

in which ρA
min ≥ 24 show by far the highest aggregated

market prices, as well as market power and profits for g.

The differences in market power between the UNI and the

BENCH format are significant1, with the exception of the

baseline scenario where rm = 0.1. The results show that g
exploits this opportunity less when he uses the UNI format.

Specifically, g is lowering the price ρA
g on market A, and

as a result the aggregated market prices are lower than with

the BENCH format (note that the most quantity is sold

on market A and thus lowering ρA
g has strong effects). See

Figure 2 for the most substantial case, where the presence of

g when using the UNI format has an impact on aggregated

market prices up to 2.7 times as when g uses the BENCH
format. The results also show a clear reduction in market

power. In the default settings (ρA
min = 20.68), g has more

market power with the UNI format. However, in settings

with ρA
min ≥ 24, g gains substantially less market power

with respect to the default setting when using the UNI
format and therefore has less market power than with the

BENCH format. See Figure 3 for the most substantial case,

where the UNI format has up to 11% less market power.

Observation 2: The UNI format is stable against
noise. In the oligopolistic scenario, g has substantial market

power due to his position in this less competitive market

setting. If g can be less certain about market outcomes due

to increasing noise (note that we do not model noise for other

1We performed Student’s T-Tests and tested for p ≤ 0.01.
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Figure 2. Aggregated unit price against increasing competition prices
(competitive scenario, rm = 0.3). Results shown with +

−1 standard
deviation. The dotted line indicates the default setting for φ.

Figure 3. Market power against increasing competition prices (competitive
scenario, rm = 0.3). Note the scale of the y-axis.

market participants), his market power decreases when he is

using the BENCH format, but stays constant (on average)

with the UNI format (see Figure 4 for an example).

Observation 3: In all other settings, the UNI format
has comparable impacts on overall market outcomes.
Although the formats are constructed differently and show

distinct bidding behaviour (in the simulated settings not

covered in observation 1 and 2, the UNI format sells less

QB
g at a higher price ρB

g , see Figure 5 for an example), the

impact of g on market prices does not differ significantly1

when g uses the UNI or BENCH format (if noise is at

least as high as in the default setting). From the perspective

of the market, the UNI format thus shows no substantial

drawback in these cases.

E. Discussion and future work

Let us first consider why the BENCH format bids

lower prices on market B (see observation 3 and Figure 5).

Given his bid bA
g on market A, g searches for the bid bB

g

Figure 4. Market power against increasing uncertainty of g about market
outcomes (oligopolistic scenario, rm = 0.3).

Figure 5. Sampled outcomes for g (oligopolistic scenario, rm = 0.3).

that maximises the expected profits. Because bB
g reflects a

constant price ρB∗
g , an unexpectedly low residual demand

function (a result of a low value for kB) can decrease QB
g

dramatically (especially when the slope of DB
g is high).

Thus, the BENCH format bids a lower value for ρB∗
g to

stabilise the expected amount QB
g . Specifically, consider a

deterministic setting (kA = kB = 1): g maximises profits

by selling QB
g = Qopt

g at price ρ, where DB
g (ρ, kB) = Qopt

q

for kB = 1. However, in a non-deterministic setting, the

BENCH format bids a price ρB∗
g lower than ρ. This also

explains observation 2: The higher the uncertainty about

market outcomes, the lower g will bid on market B when

using the BENCH format. As the UNI format is bidding

a function instead of a constant price, it does not face

this problem and has stable market power. This makes the

UNI format appealing to bidders, as it is less vulnerable to

increasing uncertainty about market outcomes.

We now turn to observation 1 and discuss bidding be-
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haviour under exploitable market settings (here modelled

by large values for ρA
min). In most settings we studied,

multiple near-optimal combinations of quantities and prices

exist. Though the UNI format is less flexible than the

BENCH format (because bids bA
g and bB

g are based on one

bid bg), it is likely to find a bid bg that realises one of them,

as is evident in the good performance across all settings.

However, the market settings in question (with ρA
min ≥ 24)

are so favourable for g that he can sell all capacity on

both markets (QA
g = QU

g (1 − rm) and QB
g = Qopt

g ). This

means that there exists only one pair of optimal quantities

(QU
g (1 − rm) and Qopt

g ) and the optimisation problem is

reduced to finding the optimal prices. However, if QA
g is

fixed, the distance between bids bA
g and bB

g with regard to

the price axis is fixed as well (because the minimum price of

bB
g is c∗g+2RgQ

A
g , see (9)). Thus, it becomes highly unlikely

that g can bid optimal prices in both markets. We conclude

that under very favourable conditions for g, the UNI format

restricts g from realising the full potential market power. As

a result, the UNI format lowers bid bA
g substantially in order

to not overprice on market B. This makes the UNI format

appealing to market makers, as it restricts the exercise of

excessive market power in exploitable market settings.

The decision-theoretic approach taken in this work gives

first insights into this complex problem setting. However,

future work could further evaluate the UNI format in a

multi-agent setting. By including the decision-making of

multiple actors, the social efficiency improvements can be

studied in more detail. In addition, certain assumptions may

be loosened. First, individual ratios rg per bidder would

model a more dynamic market setting. Each bidder would

decide how much flexibility he actually can offer, depending

on his portfolio as well as adaptive strategies, where for

example rg = 0 means that g is not taking part in market B.

If suppliers bid on several rg values, the SO can increase

market efficiency by choosing among them (see also [5]).

Second, bidders can be allowed to adjust both bid parameters

(see Section III-A and one might investigate the usefulness

of strategies that rely on this. Finally, it is important to

consider the bid format for the demand side, as well. In

a companion work (currently under review), which is more

tailored to the electrical engineering community, we model

a flexible consumer and formulate the problem such that he

bids a demand bid on market A and a supply bid on market

B, offering to reduce his planned consumption.

VI. CONCLUSION

This work analyses the decision problem of a smart bid-

ding agent in a two-settlement electricity auction. It provides

a parametrised, stochastic market model with discriminatory

bids. The profit maximisation problem of a generator is

formalised and studied with Monte-Carlo simulations and

careful parameter analysis. We model the current state-

of-the-art bid format and incorporate a novel format that

enables simpler computation by agents through unification of

the two bids. Experimental simulations show that the unified

format restricts market power of suppliers in exploitable

market settings, and is also less vulnerable to increasing

uncertainty of bidders about market outcomes.
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and reserve trade in electricity networks [extended abstract].
In Proceedings of the 10th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS), 2011.

[6] P. Klemperer and M. Meyer. Supply function equilibria in
oligopoly under uncertainty. Econometrica, 57(6):1243–1277,
1989.

[7] V. Krishna. Auction Theory. Academic Press, San Diego,
2002.

[8] R. Lafferty et al. Demand responsiveness in electricity
markets. Technical report, Federal Energy Regulatory Com-
mission, 2001.

[9] A. Mas-Collel et al. Microeconomics. Oxford University
Press, 1995.

[10] J. Nelder and R. Mead. A simplex method for function
minimization. The computer journal, 7(4):308, 1965.

[11] S. Oren. Design of ancillary service markets. Proceedings of
the 34th International Conference on System Sciences, 2000.

[12] J. Perloff. Microeconomics: Theory and Applications with
Calculus. Addison Wesley, 2007.

[13] S. Stoft. Power Market Economics - Designing Markets For
Electricity. Wiley-Interscience, 2002.

[14] J. Sun and L. Tesfatsion. Dynamic Testing of Whole-
sale Power Market Designs: An Open-Source Agent-Based
Framework. Computational Economics, 30(3):291–327, Aug.
2007.

[15] A. Virag, A. Jokic, R. Hermans, and P. van Den Bosch.
Combined Bidding at Power and Ancillary Service Markets.
In Proceedings of the 8th International Conference on the
European Energy Market, Zagreb, 2011.

110


